II) Repères du plan. Coordonnées de points et de vecteurs

1) Repères du plan

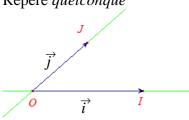
Choisir un repère dans le plan c'est :

- choisir un point O, appelé origine du repère,
- chosir deux vecteurs non colinéaires $\vec{i} = \overrightarrow{OI}$ et $\vec{j} = \overrightarrow{OJ}$,
- choisir *un ordre* entre \vec{i} et \vec{j} .

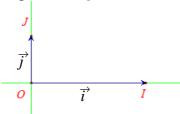
La droite (*OI*) munie du repère (O, \overrightarrow{i}) est *l'axe des abscisses* du repère (O, \overrightarrow{i} , \overrightarrow{j}) et la droite (*OJ*) munie du repère (O, \overrightarrow{j}) est *l'axe des ordonnées*.

3 cas se présentent :

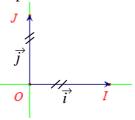
Repère quelconque



Repère orthogonal



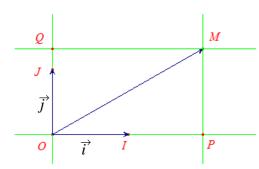
Repère orthonormal



2) Coordonnées d'un point dans un repère

Dans un repère (O, \vec{i}, \vec{j}) , tout point M du plan a pour coordonnées (x,y) telles que $\overrightarrow{OI} = x \ \overrightarrow{i} + y \ \overrightarrow{j}$, les coordonnées dans ce repère étant uniques.

x est l'abscisse du pont M et y son ordonnée.



$$\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PM} = \overrightarrow{OP} + \overrightarrow{OQ} = x \overrightarrow{i} + y \overrightarrow{j}$$

Remarque

Dans le plan, un point est repéré par deux coordonnées. On dit que le plan est de dimension 2

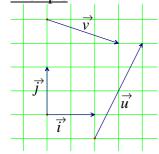
3) Coordonnées d'un vecteur dans une base

a) Définitions

Soit \vec{i} et \vec{j} deux vecteurs non colinéaires. Le couple (\vec{i}, \vec{j}) s'appelle une base de l'ensemble des vecteurs du plan.

Dire que le vecteur \vec{u} a pour coordonnées (x;y) dans la base (\vec{i}, \vec{j}) signifie que $\vec{u} = x \vec{i} + y \vec{j}$. On écrit alors $\vec{u}(x;y)$.

Exemple



Dans la base $(\overrightarrow{i}, \overrightarrow{j})$ ci-contre :

$$\overrightarrow{u}(1;2) \operatorname{car} \overrightarrow{u} = \overrightarrow{i} + 2\overrightarrow{j}$$

$$\overrightarrow{v}\left(\frac{3}{2}, -\frac{1}{2}\right) \operatorname{car} \overrightarrow{v} = \frac{3}{2}\overrightarrow{i} - \frac{1}{2}\overrightarrow{j}$$

Remarque

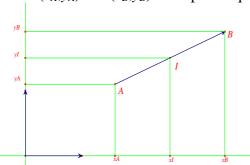
Les coordonnées dans la base (\vec{i}, \vec{j}) du vecteur \vec{u} sont les coordonnées dans le repère (O, \vec{i}, \vec{j}) du vecteur du point M tel que $\overrightarrow{OM} = \vec{u}$.

b) Propriétés

Soit $\overrightarrow{u}(x;y)$ et $\overrightarrow{v}(x';y')$ deux vecteurs dans une base $(\overrightarrow{i},\overrightarrow{j})$ et $k \in \mathbb{R}$.

- $\vec{u} = \vec{v}$ ssi x = x'et y = y' (deux vecteurs sont égaux ssi ils ont mêmes coordonnées)
- \overrightarrow{u} + \overrightarrow{v} (x + x'; y + y')
- $k \overrightarrow{u}(kx;ky)$

4) Coordonnées du vecteur \overrightarrow{AB} et du milieu du segment [AB] Soit $A(x_A, y_A)$ et $B(x_B, y_B)$ deux points quelconques.



Les coordonnées du vecteur \overrightarrow{AB} sont :

$$\overrightarrow{AB}(x_B - x_A; y_B - y_A)$$

Le milieu I de [AB] a pour coordonnées :

$$I\left(\frac{x_A+x_B}{2},\frac{y_A+y_B}{2}\right)$$

5) Distance de deux points

 (O, \vec{i}, \vec{j}) étant un repère orthonormal, la distance des points $A(x_A; y_A)$ et $B(x_B; y_B)$ (ou norme du vecteur \overrightarrow{AB})

$$AB = ||\overrightarrow{AB}|| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Conséquence

Soit une base orthonormale (\vec{i}, \vec{j}) , la norme du vecteur $\vec{u}(x;y)$ est $\sqrt{x^2 + y^2}$

III) Vecteurs colinéaires

Propriété

Les vecteurs $\overrightarrow{u}(x;y)$ et $\overrightarrow{v}(x';y')$ sont deux vecteurs colinéaires ssi xy' - x'y = 0.

Démonstration

Exemples

Soit
$$\vec{u}(2;3)$$
, $\vec{v}(-3, -\frac{9}{2})$ et $\vec{w}(3;4)$.

$$\overrightarrow{u}$$
 et \overrightarrow{v} sont colinéaires car $2 \times \left(-\frac{9}{2}\right)$ - $(-3) \times 3 = 0$

 \overrightarrow{u} et \overrightarrow{w} ne sont pas colinéaires car 2×4 - 3×3 = -1 \neq 0

Remarque

Le vecteur nul est colinéaire à n'importe quel vecteur car $\overrightarrow{0}(0;0)$ et la relation xy' - x'y = 0 est toujours vérifiée.