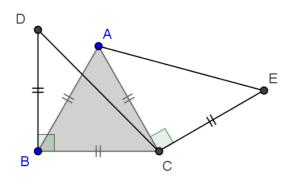
Contrôle Première S1

Exercice 1 (4 points)

- 1) Vérifier que $\frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$.
- 2) Calculer $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$. En déduire $\cos \frac{13\pi}{12}$ et $\sin \frac{13\pi}{12}$.


Exercice 2 (5 points)

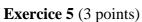
Donner la (ou les) bonne(s) réponse(s).

Donner Ia (ou les) bonne(s) reponse(s).				
1) Si $ABCD$ est un carré de centre O avec $\rightarrow \rightarrow (AD;AB) = \frac{\pi}{2} + k2\pi$ alors	$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{3} + k2\pi$	$\overrightarrow{(AB;AC)} = -\frac{\pi}{4} + k2\pi$	$\overrightarrow{(DA;DC)} = \frac{\pi}{2} + k2\pi$	$(\overrightarrow{OA}; \overrightarrow{OB}) = \frac{\pi}{2} + k2\pi$
2) Si les points <i>A</i> , <i>B</i> et <i>C</i> sont alignés dans cet ordre alors	$\overrightarrow{(AB;AC)} = k\pi$	$\overrightarrow{(AB;AC)} = k2\pi$	$\overrightarrow{(BA;BC)} = (2k+1)\pi$	$\overrightarrow{(CB;BA)} = (2k+1)\pi$
3) Si un angle orienté a pour mesure $-\frac{39\pi}{5}$ alors sa mesure principale est	$\frac{\pi}{5}$	$-\frac{4\pi}{5}$	$\frac{4\pi}{5}$	$-\frac{\pi}{5}$
4) Si un angle orienté a pour mesure $\frac{125\pi}{2}$ alors sa mesure principale est	$-\frac{3\pi}{2}$	$\frac{3\pi}{2}$	$\frac{\pi}{2}$	$-\frac{\pi}{2}$

Exercice 3 (4 points)

ABC est un triangle équilatéral direct. Les triangles DBC et ACE sont rectangles isocèles directs.

- 1) Donner la mesure principale de $(\overrightarrow{AB}; \overrightarrow{AC})$ et $(\overrightarrow{AC}; \overrightarrow{AE})$.
- 2) Montrer que $\widehat{DAB} = \frac{5\pi}{12}$ et donner les mesures de

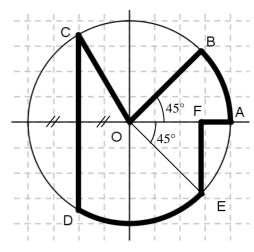

l'angle $(\overrightarrow{AD}; \overrightarrow{AB})$.

- 3) En déduire une mesure de $(\overrightarrow{AD}; \overrightarrow{AE})$.
- 4) Que peut-on en déduire pour les points D, A et E?

Exercice 4 (4 points)

Sur la figure ci-contre, le cercle est le cercle trigonométrique de centre O.

- 1) Déterminer, en valeur exacte, la longueur du chemin (en gras sur la figure) ABOCDEFA, puis en donner une valeur approchée à 10^{-2} près.
- 2) Déterminer, en valeur exacte, l'aire intérieure délimitée par ce chemin, puis en donner une valeur approchée à 10^{-2} près.



Soit x un réel.

Exprimer les nombres suivants en fonction de $\cos x$ et/ou $\sin x$.

$$A = \cos\left(\frac{\pi}{2} - x\right) + \cos(2\pi + x) + 2\sin(\pi + x).$$

$$B = 3\cos(\pi + x) + 5\sin\left(\frac{\pi}{2} - x\right) + 2\sin(-x)$$

